struct Alea::Random(G)
- Alea::Random(G)
- Struct
- Value
- Object
Overview
Alea::Random provides the interface for pseudo-random generations and distribution sampling.
NOTE due to this, you still need to specify the generator as the generic type, as it does not accept a default one.
seed = 9377
random = Alea::Random(Alea::XSR128).new(seed)
random.float # => 0.08153691876972058
# Passing an instance of a PRNG:
xsr = Alea::XSR256.new 9377, 2353
random = Alea::Random.new xsr
random.prng # => Alea::XSR256
As long as it includes the Alea::PRNG module, you can build your own generator: check
out the example provided in
the documentation to make it a valid extension for Alea::Random.
The following implementations are taken from numpy.
Defined in:
Constructors
-
.new(seed32 : Int, seed64 : Int)
Initializes the PRNG with initial seeds.
-
.new(seed : Int)
Initializes the PRNG with initial seed.
-
.new(prng : G)
Initializes the PRNG with initial instance.
-
.new
Initializes the PRNG with initial state readed from system resources.
Instance Method Summary
-
#beta(*, a, b)
Generate a beta-distributed, pseudo-random
Float64in range[0, 1). -
#beta32(*, a, b)
Generate a beta-distributed, pseudo-random
Float32in range[0, 1). -
#chisq(df)
Generate a chi-square-distributed, pseudo-random
Float64. -
#chisq32(df)
Generate a chi-square-distributed, pseudo-random
Float32. -
#exp(scale = 1.0) : Float64
Generate a exp-distributed, pseudo-random
Float64. -
#exp32(scale = 1.0_f32) : Float32
Generate a exp-distributed, pseudo-random
Float32. -
#f(df1, df2)
Generate a f-snedecor-distributed, pseudo-random
Float64. -
#f32(df1, df2)
Generate a f-snedecor-distributed, pseudo-random
Float32. -
#float(range : Range(Number, Number)) : Float64
Generate a uniform-distributed, pseudo-random
Float64in fixed range. -
#float(max : Number) : Float64
Generate a uniform-distributed, pseudo-random
Float64in range[0.0, max). -
#float : Float64
Generate a uniform-distributed, pseudo-random
Float64in range[0.0, 1.0). -
#float(min : Number, max : Number) : Float64
Generate a uniform-distributed, pseudo-random
Float64in fixed range. -
#float32(range : Range(Number, Number)) : Float32
Generate a uniform-distributed, pseudo-random
Float64in fixed range. -
#float32 : Float32
Generate a uniform-distributed, pseudo-random
Float32in range[0.0, 1.0). -
#float32(min : Number, max : Number) : Float32
Generate a uniform-distributed, pseudo-random
Float32in fixed range. -
#float32(max : Number) : Float32
Generate a uniform-distributed, pseudo-random
Float32in range[0.0, max). -
#gamma(shape, scale = 1.0)
Generate a gamma-distributed, pseudo-random
Float64. -
#gamma32(shape, scale = 1.0)
Generate a gamma-distributed, pseudo-random
Float32. -
#laplace(loc = 0.0, scale = 1.0)
Generate a laplace-distributed, pseudo-random
Float64. -
#laplace32(loc = 0.0_f32, scale = 1.0_f32)
Generate a laplace-distributed, pseudo-random
Float32. -
#lognormal(loc = 0.0, sigma = 1.0)
Generate a log-normal-distributed, pseudo-random
Float64. -
#lognormal32(loc = 0.0_f32, sigma = 1.0_f32)
Generate a log-normal-distributed, pseudo-random
Float32. -
#next_beta(*, a : Float64, b : Float64) : Float64
Generate a beta-distributed, pseudo-random
Float64in range[0, 1). -
#next_beta32(*, a : Float32, b : Float32) : Float32
Generate a beta-distributed, pseudo-random
Float32in range[0, 1). -
#next_chisq(df : Float64) : Float64
Generate a chi-square-distributed, pseudo-random
Float64. -
#next_chisq32(df : Float32) : Float32
Generate a chi-square-distributed, pseudo-random
Float32. -
#next_exp : Float64
Generate a exp-distributed, pseudo-random
Float64. -
#next_exp(scale : Float64) : Float64
Generate a exp-distributed, pseudo-random
Float64. -
#next_exp32 : Float32
Generate a exp-distributed, pseudo-random
Float32. -
#next_exp32(scale : Float32) : Float32
Generate a exp-distributed, pseudo-random
Float32. -
#next_f32 : Float32
Returns the next generated
Float32. -
#next_f64 : Float64
Returns the next generated
Float64. -
#next_float(max : Float64) : Float64
Generate a uniform-distributed, pseudo-random
Float64in range[0, max). -
#next_float(min : Float64, max : Float64) : Float64
Generate a uniform-distributed, pseudo-random
Float64in fixed range. -
#next_float32(max : Float32) : Float32
Generate a uniform-distributed, pseudo-random
Float32in range[0, max). -
#next_float32(min : Float32, max : Float32) : Float32
Generate a uniform-distributed, pseudo-random
Float32in fixed range. -
#next_fs(df1 : Float64, df2 : Float64) : Float64
Generate a f-snedecor-distributed, pseudo-random
Float64. -
#next_fs32(df1 : Float32, df2 : Float32) : Float32
Generate a f-snedecor-distributed, pseudo-random
Float32. -
#next_gamma(shape : Float64, scale : Float64) : Float64
Generate a gamma-distributed, pseudo-random
Float64. -
#next_gamma(shape : Float64) : Float64
Generate a gamma-distributed, pseudo-random
Float64. -
#next_gamma32(shape : Float32, scale : Float32) : Float32
Generate a gamma-distributed, pseudo-random
Float32. -
#next_gamma32(shape : Float32) : Float32
Generate a gamma-distributed, pseudo-random
Float32. -
#next_laplace : Float64
Generate a laplace-distributed, pseudo-random
Float64. -
#next_laplace(loc : Float64, scale : Float64) : Float64
Generate a laplace-distributed, pseudo-random
Float64. -
#next_laplace(loc : Float64) : Float64
Generate a laplace-distributed, pseudo-random
Float64. -
#next_laplace32 : Float32
Generate a laplace-distributed, pseudo-random
Float32. -
#next_laplace32(loc : Float32) : Float32
Generate a laplace-distributed, pseudo-random
Float32. -
#next_laplace32(loc : Float32, scale : Float32) : Float32
Generate a laplace-distributed, pseudo-random
Float32. -
#next_lognormal : Float64
Generate a log-normal-distributed, pseudo-random
Float64. -
#next_lognormal(loc : Float64) : Float64
Generate a log-normal-distributed, pseudo-random
Float64. -
#next_lognormal(loc : Float64, sigma : Float64) : Float64
Generate a log-normal-distributed, pseudo-random
Float64. -
#next_lognormal32 : Float32
Generate a log-normal-distributed, pseudo-random
Float32. -
#next_lognormal32(loc : Float32) : Float32
Generate a log-normal-distributed, pseudo-random
Float32. -
#next_lognormal32(loc : Float32, sigma : Float32) : Float32
Generate a log-normal-distributed, pseudo-random
Float32. -
#next_normal : Float64
Generate a normal-distributed, pseudo-random
Float64. -
#next_normal(loc : Float64) : Float64
Generate a normal-distributed, pseudo-random
Float64. -
#next_normal(loc : Float64, sigma : Float64) : Float64
Generate a normal-distributed, pseudo-random
Float64. -
#next_normal32 : Float32
Generate a normal-distributed, pseudo-random
Float32. -
#next_normal32(loc : Float32, sigma : Float32) : Float32
Generate a normal-distributed, pseudo-random
Float32. -
#next_normal32(loc : Float32) : Float32
Generate a normal-distributed, pseudo-random
Float32. -
#next_poisson : Int64
Generate a poisson-distributed, pseudo-random
Int64. -
#next_poisson(lam : Float64) : Int64
Generate a poisson-distributed, pseudo-random
Int64. -
#next_t(df : Float64) : Float64
Generate a t-student-distributed, pseudo-random
Float64. -
#next_t32(df : Float32) : Float32
Generate a t-student-distributed, pseudo-random
Float32. -
#next_u32 : UInt32
Returns the next generated
UInt32. -
#next_u64 : UInt64
Returns the next generated
UInt64. -
#next_uint(min : UInt64, max : UInt64) : UInt64
Generate a uniform-distributed, pseudo-random
UInt64in fixed range. -
#next_uint(max : UInt64) : UInt64
Generate a uniform-distributed, pseudo-random
UInt64in range[0, max). -
#next_uint32(min : UInt32, max : UInt32) : UInt32
Generate a uniform-distributed, pseudo-random
UInt32in fixed range. -
#next_uint32(max : UInt32) : UInt32
Generate a uniform-distributed, pseudo-random
UInt32in range[0, max). -
#normal(loc = 0.0, sigma = 1.0)
Generate a normal-distributed, pseudo-random
Float64. -
#normal32(loc = 0.0, sigma = 1.0) : Float32
Generate a normal-distributed, pseudo-random
Float32. -
#poisson(lam = 1.0)
Generate a poisson-distributed, pseudo-random
Int64. -
#prng : G
The PRNG in use by this struct.
-
#t(df)
Generate a t-student-distributed, pseudo-random
Float64. -
#t32(df)
Generate a t-student-distributed, pseudo-random
Float32. -
#uint : UInt64
Generate a uniform-distributed, pseudo-random
UInt64. -
#uint(range : Range(Number, Number)) : UInt64
Generate a uniform-distributed, pseudo-random
UInt64in fixed range. -
#uint(max : Number) : UInt64
Generate a uniform-distributed, pseudo-random
UInt64in range[0, max). -
#uint(min : Number, max : Number) : UInt64
Generate a uniform-distributed, pseudo-random
UInt64in fixed range. -
#uint32 : UInt32
Generate a uniform-distributed, pseudo-random
UInt32. -
#uint32(range : Range(Number, Number)) : UInt32
Generate a uniform-distributed, pseudo-random
UInt32in fixed range. -
#uint32(max : Number) : UInt32
Generate a uniform-distributed, pseudo-random
UInt32in range[0, max). -
#uint32(min : Number, max : Number) : UInt32
Generate a uniform-distributed, pseudo-random
UInt32in fixed range.
Constructor Detail
Initializes the PRNG with initial seeds.
@parameters:
seed32: value as input to init. the state of 32-bit generators of#prng.seed64: value as input to init. the state of 64-bit generators of#prng.
@exceptions:
Alea::UndefinedErrorif any ofseed32orseed64is negative.
Initializes the PRNG with initial seed.
@parameters:
seed: initial seed as input for generating the state of#prng.
@exceptions:
Alea::UndefinedErrorifseedis negative.
Initializes the PRNG with initial instance.
NOTE due to this, you still need to specify the generator as the generic type, as it does not accept a default one.
@parameters:
#prng: the PRNG instance itself.
Instance Method Detail
Generate a beta-distributed, pseudo-random Float64 in range [0, 1).
@note: named arguments are mandatory to prevent ambiguity.
@parameters:
a: shape parameter of the distribution; usually mentioned asα.b: shape parameter of the distribution; usually mentioned asβ.
@exceptions:
Alea::NaNErrorif any of the arguments isNaN.Alea::InfinityErrorif any of the arguments isInfinity.Alea::UndefinedErrorif any ofaorbis negative or zero.
Generate a beta-distributed, pseudo-random Float32 in range [0, 1).
@note: named arguments are mandatory to prevent ambiguity.
@parameters:
a: shape parameter of the distribution; usually mentioned asα.b: shape parameter of the distribution; usually mentioned asβ.
@exceptions:
Alea::NaNErrorif any of the arguments isNaN.Alea::InfinityErrorif any of the arguments isInfinity.Alea::UndefinedErrorif any ofaorbis negative or zero.
Generate a chi-square-distributed, pseudo-random Float64.
@parameters:
df: degrees of freedom of the distribution; usually mentioned ask.
@exceptions:
Alea::NaNErrorif any of the arguments isNaN.Alea::InfinityErrorif any of the arguments isInfinity.Alea::UndefinedErrorifdfis negative or zero.
Generate a chi-square-distributed, pseudo-random Float32.
@parameters:
df: degrees of freedom of the distribution; usually mentioned ask.
@exceptions:
Alea::NaNErrorif any of the arguments isNaN.Alea::InfinityErrorif any of the arguments isInfinity.Alea::UndefinedErrorifdfis negative or zero.
Generate a exp-distributed, pseudo-random Float64.
@parameters:
scale: scale parameter of the distribution; usually mentioned asλ^-1.
@exceptions:
Alea::NaNErrorif any of the arguments isNaN.Alea::InfinityErrorif any of the arguments isInfinity.Alea::UndefinedErrorifscaleis negative or zero.
Generate a exp-distributed, pseudo-random Float32.
@parameters:
scale: scale parameter of the distribution; usually mentioned asλ^-1.
@exceptions:
Alea::NaNErrorif any of the arguments isNaN.Alea::InfinityErrorif any of the arguments isInfinity.Alea::UndefinedErrorifscaleis negative or zero.
Generate a f-snedecor-distributed, pseudo-random Float64.
@parameters:
df1: degrees of freedom of the underlying chi-square distribution, numerator side; usually mentioned asm.df2: degrees of freedom of the underlying chi-square distribution, denominator side; usually mentioned asn.
@note: due to homonymy with float methods, the unparsed method
is indentified with #next_fs.
@exceptions:
Alea::NaNErrorif any of the arguments isNaN.Alea::InfinityErrorif any of the arguments isInfinity.Alea::UndefinedErrorifdfis negative or zero.
Generate a f-snedecor-distributed, pseudo-random Float32.
@parameters:
df1: degrees of freedom of the underlying chi-square distribution, numerator side; usually mentioned asm.df2: degrees of freedom of the underlying chi-square distribution, denominator side; usually mentioned asn.
@note: due to homonymy with float methods, the unparsed method
is indentified with #next_fs32.
@exceptions:
Alea::NaNErrorif any of the arguments isNaN.Alea::InfinityErrorif any of the arguments isInfinity.Alea::UndefinedErrorifdfis negative or zero.
Generate a uniform-distributed, pseudo-random Float64 in fixed range.
@parameters:
range: range parameter, inclusive or exclusive, of the distribution:range.begin: left bound parameter of range of the distribution; usually mentioned asa.range.end: right bound parameter of range of the distribution; usually mentioned asb.
@notes:
- inclusive means
[range.begin, range.end]. - exclusive means
[range.begin, range.end). - see
Rangefrom Crystal stdlib.
@examples:
range_in = 10.0..9377.0
range_in # Range(Float64, Float64), end-inclusive
range_ex = 10.0...9377.0
range_ex # Range(Float64, Float64), end-exclusive
random = Alea::Random.new
random.float(range_in) # => 9113.861259040154
random.float(range_ex) # => 7701.2778313581175
@exceptions:
Alea::NaNErrorif any of the arguments bound isNaN.Alea::InfinityErrorif any of the arguments bound isInfinity.Alea::UndefinedErrorifrange.endis less thanrange.begin.Alea::UndefinedErrorifrangeis not end-inclusive but bounds are the same.
Generate a uniform-distributed, pseudo-random Float64 in range [0.0, max).
@parameters:
max: right bound parameter of range of the distribution; usually mentioned asb.
@exceptions:
Alea::NaNErrorif any of the arguments isNaN.Alea::InfinityErrorif any of the arguments isInfinity.Alea::UndefinedErrorifmaxis negative or zero.
Generate a uniform-distributed, pseudo-random Float64 in range [0.0, 1.0).
@references: #next_f64.
Generate a uniform-distributed, pseudo-random Float64 in fixed range.
@parameters:
min: left bound parameter of range of the distribution; usually mentioned asa.max: right bound parameter of range of the distribution; usually mentioned asb.
Generate a uniform-distributed, pseudo-random Float64 in fixed range.
@parameters:
range: range parameter, inclusive or exclusive, of the distribution:range.begin: left bound parameter of range of the distribution; usually mentioned asa.range.end: right bound parameter of range of the distribution; usually mentioned asb.
@notes:
- inclusive means
[range.begin, range.end]. - exclusive means
[range.begin, range.end). - see
Rangefrom Crystal stdlib.
@examples:
range_in = 10.0..9377.0
range_in # Range(Float64, Float64), end-inclusive
range_ex = 10.0...9377.0
range_ex # Range(Float64, Float64), end-exclusive
random = Alea::Random.new
random.float32(range_in) # => 950.3449
random.float32(range_ex) # => 3455.0183
@exceptions:
Alea::NaNErrorif any of the arguments bound isNaN.Alea::InfinityErrorif any of the arguments bound isInfinity.Alea::UndefinedErrorifrange.endis less thanrange.begin.Alea::UndefinedErrorifrangeis not end-inclusive but bounds are the same.
Generate a uniform-distributed, pseudo-random Float32 in range [0.0, 1.0).
@references: #next_f32.
Generate a uniform-distributed, pseudo-random Float32 in fixed range.
@parameters:
min: left bound parameter of range of the distribution; usually mentioned asa.max: right bound parameter of range of the distribution; usually mentioned asb.
Generate a uniform-distributed, pseudo-random Float32 in range [0.0, max).
@parameters:
max: right bound parameter of range of the distribution; usually mentioned asb.
@exceptions:
Alea::NaNErrorif any of the arguments isNaN.Alea::InfinityErrorif any of the arguments isInfinity.Alea::UndefinedErrorifmaxis negative or zero.
Generate a gamma-distributed, pseudo-random Float64.
@parameters:
shape: shape parameter of the distribution; usually mentioned ask.scale: scale parameter of the distribution; usually mentioned asθ.
@exceptions:
Alea::NaNErrorif any of the arguments isNaN.Alea::InfinityErrorif any of the arguments isInfinity.Alea::UndefinedErrorif any ofshapeorscaleis negative or zero.
Generate a gamma-distributed, pseudo-random Float32.
@parameters:
shape: shape parameter of the distribution; usually mentioned ask.scale: scale parameter of the distribution; usually mentioned asθ.
@exceptions:
Alea::NaNErrorif any of the arguments isNaN.Alea::InfinityErrorif any of the arguments isInfinity.Alea::UndefinedErrorif any ofshapeorscaleis negative or zero.
Generate a laplace-distributed, pseudo-random Float64.
@parameters:
loc: centrality parameter, or mean of the distribution; usually mentioned asμ.scale: scale parameter of the distribution; usually mentioned asb.
@exceptions:
Alea::NaNErrorif any of the arguments isNaN.Alea::InfinityErrorif any of the arguments isInfinity.Alea::UndefinedErrorifscaleis negative or zero.
Generate a laplace-distributed, pseudo-random Float32.
@parameters:
loc: centrality parameter, or mean of the distribution; usually mentioned asμ.scale: scale parameter of the distribution; usually mentioned asb.
@exceptions:
Alea::NaNErrorif any of the arguments isNaN.Alea::InfinityErrorif any of the arguments isInfinity.Alea::UndefinedErrorifscaleis negative or zero.
Generate a log-normal-distributed, pseudo-random Float64.
@parameters:
loc: centrality parameter, or mean of the underlying normal distribution; usually mentioned asμ.sigma: scale parameter, or standard deviation of the underlying normal distribution; usually mentioned asσ.
@exceptions:
Alea::NaNErrorif any of the arguments isNaN.Alea::InfinityErrorif any of the arguments isInfinity.Alea::UndefinedErrorifsigmais negative or zero.
Generate a log-normal-distributed, pseudo-random Float32.
@parameters:
loc: centrality parameter, or mean of the underlying normal distribution; usually mentioned asμ.sigma: scale parameter, or standard deviation of the underlying normal distribution; usually mentioned asσ.
@exceptions:
Alea::NaNErrorif any of the arguments isNaN.Alea::InfinityErrorif any of the arguments isInfinity.Alea::UndefinedErrorifsigmais negative or zero.
Generate a beta-distributed, pseudo-random Float64 in range [0, 1).
Unparsed version of #beta.
@note: named arguments are mandatory to prevent ambiguity.
@parameters:
a: shape parameter of the distribution; usually mentioned asα.b: shape parameter of the distribution; usually mentioned asβ.
Generate a beta-distributed, pseudo-random Float32 in range [0, 1).
Unparsed version of #beta32.
@note: named arguments are mandatory to prevent ambiguity.
@parameters:
a: shape parameter of the distribution; usually mentioned asα.b: shape parameter of the distribution; usually mentioned asβ.
Generate a chi-square-distributed, pseudo-random Float64.
Unparsed version of #chisq.
@parameters:
df: degrees of freedom of the distribution; usually mentioned ask.
Generate a chi-square-distributed, pseudo-random Float32.
Unparsed version of #chisq32.
@parameters:
df: degrees of freedom of the distribution; usually mentioned ask.
Generate a exp-distributed, pseudo-random Float64.
Unparsed version of #exp.
@parameters:
scale: scale parameter of the distribution; usually mentioned asλ^-1.
Generate a exp-distributed, pseudo-random Float32.
Unparsed version of #exp32.
@parameters:
scale: scale parameter of the distribution; usually mentioned asλ^-1.
Generate a uniform-distributed, pseudo-random Float64 in range [0, max).
Unparsed version for #float.
@parameters:
max: right bound parameter of range of the distribution; usually mentioned asb.
Generate a uniform-distributed, pseudo-random Float64 in fixed range.
Unparsed version for #float.
@parameters:
min: left bound parameter of range of the distribution; usually mentioned asa.max: right bound parameter of range of the distribution; usually mentioned asb.
Generate a uniform-distributed, pseudo-random Float32 in range [0, max).
Unparsed version for #float32.
@parameters:
max: right bound parameter of range of the distribution; usually mentioned asb.
Generate a uniform-distributed, pseudo-random Float32 in fixed range.
Unparsed version for #float32.
@parameters:
min: left bound parameter of range of the distribution; usually mentioned asa.max: right bound parameter of range of the distribution; usually mentioned asb.
Generate a f-snedecor-distributed, pseudo-random Float64.
Unparsed version of #f.
@parameters:
df1: degrees of freedom of the underlying chi-square distribution, numerator side; usually mentioned asm.df2: degrees of freedom of the underlying chi-square distribution, denominator side; usually mentioned asn.
Generate a f-snedecor-distributed, pseudo-random Float32.
Unparsed version of #f32.
@parameters:
df1: degrees of freedom of the underlying chi-square distribution, numerator side; usually mentioned asm.df2: degrees of freedom of the underlying chi-square distribution, denominator side; usually mentioned asn.
Generate a gamma-distributed, pseudo-random Float64.
Unparsed version of #gamma.
@parameters:
shape: shape parameter of the distribution; usually mentioned ask.scale: scale parameter of the distribution; usually mentioned asθ.
Generate a gamma-distributed, pseudo-random Float64.
Unparsed version of #gamma.
@parameters:
shape: shape parameter of the distribution; usually mentioned ask.
@note:
scaleis1.0.
Generate a gamma-distributed, pseudo-random Float32.
Unparsed version of #gamma.
@parameters:
shape: shape parameter of the distribution; usually mentioned ask.scale: scale parameter of the distribution; usually mentioned asθ.
Generate a gamma-distributed, pseudo-random Float32.
Unparsed version of #gamma32.
@parameters:
shape: shape parameter of the distribution; usually mentioned ask.
@note:
scaleis1.0.
Generate a laplace-distributed, pseudo-random Float64.
Unparsed version of #laplace.
@notes:
locis0.0.scaleis1.0.
Generate a laplace-distributed, pseudo-random Float64.
Unparsed version of #laplace.
@parameters:
loc: centrality parameter, or mean of the distribution; usually mentioned asμ.scale: scale parameter of the distribution; usually mentioned asb.
Generate a laplace-distributed, pseudo-random Float64.
Unparsed version of #laplace.
@parameters:
loc: centrality parameter, or mean of the distribution; usually mentioned asμ.
@notes:
scaleis1.0.
Generate a laplace-distributed, pseudo-random Float32.
Unparsed version of #laplace32.
@notes:
locis0.0.scaleis1.0.
Generate a laplace-distributed, pseudo-random Float32.
Unparsed version of #laplace32.
@parameters:
loc: centrality parameter, or mean of the distribution; usually mentioned asμ.
@notes:
scaleis1.0.
Generate a laplace-distributed, pseudo-random Float32.
Unparsed version of #laplace32.
@parameters:
loc: centrality parameter, or mean of the distribution; usually mentioned asμ.scale: scale parameter of the distribution; usually mentioned asb.
Generate a log-normal-distributed, pseudo-random Float64.
Unparsed version of #lognormal.
@notes:
locis0.0.sigmais1.0.
Generate a log-normal-distributed, pseudo-random Float64.
Unparsed version of #lognormal.
@parameters:
loc: centrality parameter, or mean of the underlying normal distribution; usually mentioned asμ.
@notes:
sigmais1.0.
Generate a log-normal-distributed, pseudo-random Float64.
Unparsed version of #lognormal.
@parameters:
loc: centrality parameter, or mean of the underlying normal distribution; usually mentioned asμ.sigma: scale parameter, or standard deviation of the underlying normal distribution; usually mentioned asσ.
Generate a log-normal-distributed, pseudo-random Float32.
Unparsed version of #lognormal32.
@notes:
locis0.0.sigmais1.0.
Generate a log-normal-distributed, pseudo-random Float32.
Unparsed version of #lognormal32.
@parameters:
loc: centrality parameter, or mean of the underlying normal distribution; usually mentioned asμ.
@notes:
sigmais1.0.
Generate a log-normal-distributed, pseudo-random Float32.
Unparsed version of #lognormal32.
@parameters:
loc: centrality parameter, or mean of the underlying normal distribution; usually mentioned asμ.sigma: scale parameter, or standard deviation of the underlying normal distribution; usually mentioned asσ.
Generate a normal-distributed, pseudo-random Float64.
Unparsed version of #normal.
@notes:
locis0.0.sigmais1.0.
Generate a normal-distributed, pseudo-random Float64.
Unparsed version of #normal.
@parameters:
loc: centrality parameter, or mean of the distribution; usually mentioned asμ.
@notes:
sigmais1.0.
Generate a normal-distributed, pseudo-random Float64.
Unparsed version of #normal.
@parameters:
loc: centrality parameter, or mean of the distribution; usually mentioned asμ.sigma: scale parameter, or standard deviation of the distribution; usually mentioned asσ.
Generate a normal-distributed, pseudo-random Float32.
Unparsed version of #normal32.
@notes:
locis0.0.sigmais1.0.
Generate a normal-distributed, pseudo-random Float32.
Unparsed version of #normal32.
@parameters:
loc: centrality parameter, or mean of the distribution; usually mentioned asμ.sigma: scale parameter, or standard deviation of the distribution; usually mentioned asσ.
Generate a normal-distributed, pseudo-random Float32.
Unparsed version of #normal32.
@parameters:
loc: centrality parameter, or mean of the distribution; usually mentioned asμ.
@notes:
sigmais1.0.
Generate a poisson-distributed, pseudo-random Int64.
Unparsed version of #poisson.
@notes:
lamis1.0.
Generate a poisson-distributed, pseudo-random Int64.
Unparsed version of #poisson.
@parameters:
lam: separation parameter of the distribution; usually mentioned asλ.
Generate a t-student-distributed, pseudo-random Float64.
Unparsed version of #t.
@parameters:
df: degrees of freedom of the distribution; usually mentioned asn.
Generate a t-student-distributed, pseudo-random Float32.
Unparsed version of #t32.
@parameters:
df: degrees of freedom of the distribution; usually mentioned asn.
Generate a uniform-distributed, pseudo-random UInt64 in fixed range.
Unparsed version for #uint.
@parameters:
min: left bound parameter of range of the distribution; usually mentioned asa.max: right bound parameter of range of the distribution; usually mentioned asb.
Generate a uniform-distributed, pseudo-random UInt64 in range [0, max).
Unparsed version for #uint.
@parameters:
max: right bound parameter of range of the distribution; usually mentioned asb.
Generate a uniform-distributed, pseudo-random UInt32 in fixed range.
Unparsed version for #uint32.
@parameters:
min: left bound parameter of range of the distribution; usually mentioned asa.max: right bound parameter of range of the distribution; usually mentioned asb.
Generate a uniform-distributed, pseudo-random UInt32 in range [0, max).
Unparsed version for #uint32.
@parameters:
max: right bound parameter of range of the distribution; usually mentioned asb.
Generate a normal-distributed, pseudo-random Float64.
@parameters:
loc: centrality parameter, or mean of the distribution; usually mentioned asμ.sigma: scale parameter, or standard deviation of the distribution; usually mentioned asσ.
@exceptions:
Alea::NaNErrorif any of the arguments isNaN.Alea::InfinityErrorif any of the arguments isInfinity.Alea::UndefinedErrorifsigmais negative or zero.
Generate a normal-distributed, pseudo-random Float32.
@parameters:
loc: centrality parameter, or mean of the distribution; usually mentioned asμ.sigma: scale parameter, or standard deviation of the distribution; usually mentioned asσ.
@exceptions:
Alea::NaNErrorif any of the arguments isNaN.Alea::InfinityErrorif any of the arguments isInfinity.Alea::UndefinedErrorifsigmais negative or zero.
Generate a poisson-distributed, pseudo-random Int64.
@parameters:
lam: separation parameter of the distribution; usually mentioned asλ.
@exceptions:
Alea::NaNErrorif any of the arguments isNaN.Alea::InfinityErrorif any of the arguments isInfinity.Alea::UndefinedErroriflamis negative or zero.
Generate a t-student-distributed, pseudo-random Float64.
@parameters:
df: degrees of freedom of the distribution; usually mentioned asn.
@exceptions:
Alea::NaNErrorif any of the arguments isNaN.Alea::InfinityErrorif any of the arguments isInfinity.Alea::UndefinedErrorifdfis negative or zero.
Generate a t-student-distributed, pseudo-random Float32.
@parameters:
df: degrees of freedom of the distribution; usually mentioned asn.
@exceptions:
Alea::NaNErrorif any of the arguments isNaN.Alea::InfinityErrorif any of the arguments isInfinity.Alea::UndefinedErrorifdfis negative or zero.
Generate a uniform-distributed, pseudo-random UInt64 in fixed range.
@parameters:
range: range parameter, inclusive or exclusive, of the distribution:range.begin: left bound parameter of range of the distribution; usually mentioned asa.range.end: right bound parameter of range of the distribution; usually mentioned asb.
@notes:
- inclusive means
[range.begin, range.end]. - exclusive means
[range.begin, range.end). - see
Rangefrom Crystal stdlib.
@examples:
range_in = 10..9377
range_in # Range(Int32, Int32), end-inclusive
range_ex = 10...9377
range_ex # Range(Int32, Int32), end-exclusive
random = Alea::Random.new
random.uint(range_in) # => 2640
random.uint(range_ex) # => 527
@exceptions:
Alea::UndefinedErrorifrange.endis less thanrange.begin.Alea::UndefinedErrorifrangeis not end-inclusive but bounds are the same.
Generate a uniform-distributed, pseudo-random UInt64 in range [0, max).
@parameters:
max: right bound parameter of range of the distribution; usually mentioned asb.
@exceptions:
Alea::UndefinedErrorifmaxis negative or zero.
Generate a uniform-distributed, pseudo-random UInt64 in fixed range.
@parameters:
min: left bound parameter of range of the distribution; usually mentioned asa.max: right bound parameter of range of the distribution; usually mentioned asb.
Generate a uniform-distributed, pseudo-random UInt32 in fixed range.
@parameters:
range: range parameter, inclusive or exclusive, of the distribution:range.begin: left bound parameter of range of the distribution; usually mentioned asa.range.end: right bound parameter of range of the distribution; usually mentioned asb.
@notes:
- inclusive means
[range.begin, range.end]. - exclusive means
[range.begin, range.end). - see
Rangefrom Crystal stdlib.
@examples:
range_in = 10..9377
range_in # Range(Int32, Int32), end-inclusive
range_ex = 10...9377
range_ex # Range(Int32, Int32), end-exclusive
random = Alea::Random.new
random.uint32(range_in) # => 9260
random.uint32(range_ex) # => 153
@exceptions:
Alea::UndefinedErrorifrange.endis less thanrange.begin.Alea::UndefinedErrorifrangeis not end-inclusive but bounds are the same.
Generate a uniform-distributed, pseudo-random UInt32 in range [0, max).
@parameters:
max: right bound parameter of range of the distribution; usually mentioned asb.
@exceptions:
Alea::UndefinedErrorifmaxis negative or zero.
Generate a uniform-distributed, pseudo-random UInt32 in fixed range.
@parameters:
min: left bound parameter of range of the distribution; usually mentioned asa.max: right bound parameter of range of the distribution; usually mentioned asb.